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Abstract. By using the standard reductive perturbation technique, a nonlinear Schrödinger equation is de-
rived to study the modulational instability of finite amplitude electron-acoustic waves in an unmagnetized
plasma consisting of cold electron fluid and nonthermal electrons. It is found that the presence of nonther-
mally distributed electrons modifies the domain of the modulational instability and solitary structures.
Possibility of stationary states of the wave packets that can appear as envelope solitons under different
conditions is explored. The present investigation is relevant to observation from the Viking satellite in the
dayside auroral zone.

PACS. 52.35.-g Waves, oscillations, and instabilities in plasmas and intense beams

1 Introduction

Nonlinear behaviour of natural phenomena is one of the
most important subject of plasma physics. In the non-
linear wave studies, the propagation of solitary waves is
important as it describes the characteristics of interac-
tion between waves and plasma. Among the best known
paradigms used to investigate nonlinear wave behaviour
are different versions of Korteweg-de Vries (KdV) equa-
tion, or nonlinear Schrödinger equation (NLSE). Some
form of reductive perturbation technique is used to derive
such equations. The KdV equation describes the evolution
of unmodulated wave. In this case, the bare pulse does
not contain high frequency oscillations inside the packet,
is called KdV soliton. On the other hand, the NLSE gov-
erns the dynamics of a modulated wave packet. Here the
nonlinearities are in balance with wave group dispersion
and the resulting solution of the NLSE possesses envelope
structure, known as an envelope soliton.

Electron-acoustic (EA) wave is an electrostatic wave
which had been first discovered experimentally [1–3]. The
plasma with two population groups of electrons, described
by two Maxwellian distribution functions with different
temperature, supports an electrostatic electron-acoustic
wave [4]. The two populations are referred to as ‘cold’ and
‘hot’ electrons with respective temperatures Tc and Th.
The cold electrons in EA waves play the role of cold ions in
ion-acoustic waves and in this sense the wave is analogous
to ion-acoustic wave. The ions play no role in the dynamics
of EA waves and are required solely for charge neutraliza-
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tion. The mode is restrictive in the sense that it demands
Tc � Th and further the hot electron population should
represent a significant fraction of total electron density. It
may further be noted that plasmas with different temper-
atures and masses frequently occur in the space environ-
ment, particularly, the two temperature electrons are very
common in laboratory [5] and space plasmas. Interestingly,
the studies of two electron temperatures are encouraged
by satellite observations [6–10]. The nonlinear localized
structures, e.g., ion-acoustic solitons and double-layers in
two electrons component plasma, have been studied ex-
perimentally and theoretically by a number of authors.
Since plasmas with two electrons temperatures occur in
both laboratory experimental and space plasmas, Gary
and Tokar [11] performed a parameter survey and found
conditions for the existence of the EA waves. The EA
mode plays an important role in these environments [12].
In the earth’s bow shock, particularly in the upstream re-
gion, the electron acoustic waves have been suggested as
a possible source of broadband electrostatic noise (BEN).
They are also of potential importance in interpreting BEN
observed in cusp of terrestrial magnetospace in auroral re-
gion and in geomagnetic tail [12–15]. The EA mode has
also been used to explain wave emissions in different re-
gions of the Earth’s magnetosphere. Furthermore, the EA
mode has been applied to interpret the hiss observed in
the polar cusp region.

A study of nonlinear properties of large amplitude nec-
essarily useful for understanding BEN, was pointed by
Mace et al. [16]. Dubouloz et al. [17,18] rigorously stud-
ied the BEN observed in the dayside of auroral zone and
explained short duration burst of BEN in terms of EA
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solitary waves. They considered a one-dimensional unmag-
netized collisionless plasma consisting of cold electrons,
Maxwellian hot electrons and stationary ions. In the pres-
ence of large electron beam energy, the nonlinear effects
combine with the dispersive properties of EA waves re-
sulting in the formation of EA solitons [12]. This leads to
existence of new EA solitons with velocity related to beam
velocity. Berthomier et al. [12] pointed out that positive
potential structure is very important from the point of
view of the interpretation of various electrostatic struc-
tures observed in the auroral region at intermediate alti-
tude by FAST and at higher altitudes by POLAR and in
geomagnetic tail by GEOTAIL. Mace and Hellberg [19]
studied the effect of magnetic field on electron acoustic
solitons. They derived KdV-ZK equation for weakly non-
linear EA waves and discussed its solitonic solutions.

In practice, the hot electrons may not follow a
Maxwellian distribution. Moreover, it had been found that
the electrons and ions distributions play a crucial role in
characterizing the physics of nonlinear waves. They offer a
considerable increase in richness and variety of wave mo-
tion which can exist in plasma and further significantly in-
fluence the conditions required for the formation of these
waves. Moreover, it is also known that electron and ion
distributions can be significantly modified in the presence
of large amplitude waves. Cairns et al. [20,21] explained
the structure of solitary waves with density depression us-
ing nonthermal distribution for electrons. The properties
of small but finite EA solitary waves were studied in a
plasma with cold electron fluid, hot electrons obeying a
trapped/vortex-like distributions and stationary ion [22].
Nonthermal distributions are common feature of the auro-
ral zone [23,24]. It may be mentioned here that the origin
and mechanism for the generation of nonthermal particles
in space plasma is still a central problem.

For envelope soliton, there has been an increased in-
terest in recent years on the investigation of modulational
instability of different wave modes in plasma because
of its importance in stable wave propagation. However,
only a few investigations are reported for ion-acoustic
mode [25–31]. It is further observed that EA waves being
high frequency density waves, are trapped and modulated
leading to modulation and generation of electron-acoustic
envelope solitons. In high time resolution of the FAST
observations, these kinds of nonlinear structures are ob-
served [32]. Most of the investigations reported so far, have
been restricted to modulational instability of ion-acoustic
waves in plasma with two temperature electrons [27]. In
the present investigation, we study the modulational in-
stability of EA waves in plasma with nonthermal elec-
trons. We have used the range of parameters of auroral
zone plasma measured from Viking satellite [10,17]. Us-
ing the reductive perturbation technique, we have derived
the NLSE, which governs the slow modulation of the wave
amplitude. In Section 2, we have introduced basic equa-
tions governing the dynamics of EA mode and derived
the nonlinear schrödinger equation using reductive per-
turbation method. Stability analysis and discussion of the
results are presented in the last section.

2 Derivation of nonlinear Schrödinger
equation using reductive perturbation
technique

Since the plasmas with two electrons population are
known to occur frequently in space, EA wave may play
an important role in such environment. A collisionless infi-
nite homogeneous and unmagnetized plasma is considered
in a following model. The plasma fluid model consists of
cold and hot components referred to subscript c and h
respectively. The presence of two nondrifting populations
allows the existence of the EA waves itself [12]. It may be
mentioned that cold electron component does not mean
Tc = 0. In that case EA wave will not exist [12]. The wave
propagation is assumed to be in one direction, which we
choose to be along x-axis. The fluid equations of cold elec-
tron component and Poisson’s equation can be written as
follow:

∂nc

∂t
+

∂(ncuc)
∂x

= 0 (1)

∂uc

∂t
+ uc

∂uc

∂x
+

3α(1 + α)2nc

θ

∂nc

∂x
− α

∂φ

∂x
= 0 (2)

∂2φ

∂x2
=

1
α

nc + nh −
(

1 +
1
α

)
(3)

where nc (nh) is the cold (hot) electron number density
normalized by its equilibrium value nco(nho). Here φ is the
electrostatic wave potential normalized by kBTh/e, uc is
the electron fluid velocity normalized by (kBTh/αm)1/2,
α = nho/nco, m is the mass of the electron, θ =
Th/Tc, e is the electron charge and kB is Boltzmann con-
stant, Th is the temperature of hot electrons. The space
and time variables are in units of hot electron Debye
length (KBTh/4πnhoe

2)1/2 and cold electron plasma pe-
riod ω−1

pc = (m/4πncoe
2)1/2 respectively.

In (2), inertia of cold electron is included and cold
population is assumed to respond adiabatically to electric
field perturbation. The physical origin of third term in
(2) is pressure term where adiabatic cold electrons are
considered and ratio of specific heats taken as three.

It may be mentioned that Tc �= 0 [33,34]. As earlier
mentioned in the introduction , the conditions for the ex-
istence of EA mode are as follow:

(i) Th � Tc;
(ii) cold electrons represent a significant fraction of

plasma (more than 20%). Thus, θ can not be zero
for the existence of EA mode.

Following the model of Cairns et al. [20,21], the nonther-
mal distribution for the electron is taken as

f(υ) =
1

(1 + 3γ)
√

2π
(1 + γυ4)e−υ2/2. (4)

The real parameter γ is an arbitrary parameter which de-
fines the shape of the distribution function and expresses
the deviation from the Maxwellian state. This form of the
distribution is convenient for the description of various ob-
served particle distributions. For example, when γ = 0, we
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Fig. 1. Variation of distribution function f(v) as a function of
v for two values of γ.

get Maxwellian distribution and when γ → 1, it tends to
look as two counter streaming beams with cold core dis-
tribution [35]. This last aspect is apparent from Figure 1,
which highlights this feature of the distribution. Observa-
tion is contrary to laser cooling where distribution is com-
pressed in such a way that very large numbers of atoms
contain low velocities. In the present case large number
of low velocity particles are symmetrically displaced to
form counter streaming beams. As earlier mentioned, the
mechanism for this process is not clear. For the effects of
electrostatic disturbance on the electron distribution, we
replace υ2 by (v2 −2φ) and on performing the integration
nh =

∫ ∞
−∞ f(v)dv, we get

nh = (1 − βφ + βφ2)eφ (5)

where β = 4γ/(1 + 3γ). The parameter β represents the
nonthermality of hot electron distribution.

Modulational instability of electron-acoustic wave is
studied using reductive perturbation technique. The aim
of the present work is to derive nonlinear Schrödinger
equation which governs the slow modulation of wave am-
plitude. The method is based on reductive perturbation
technique in which dependent variables are expanded and
which also make use stretching of space and time coordi-
nates. We have made use of the following set of stretched
(slow) space and time variables

ξ = ε(x − υgt) (6)

τ = ε2t (7)

where υg is the group velocity to be determined by the
compatability requirement. Here ε is a small formal ex-
pansion parameter and is the measure of the perturbation.
The condition ε � 1 implies that the plasma dimension
must be much larger than the Debye length, which is sat-
isfied in the most cases of interest. We will assume that
all perturbed quantities depend on the fast scale via the
phase χ = kx−ωt only, while the slow scales enter the ar-
gument of the lth harmonic amplitude, say for density as

n
(n)
l . Following this prescription, the dependent variables

are expanded as

nc = 1 +
∞∑

n=1

∞∑
l=−∞

εnnn
l (ξ, τ)eιl(kx−ωt) (8)

uc =
∞∑

n=1

∞∑
l=−∞

εnun
l (ξ, τ)eιl(kx−ωt) (9)

φ =
∞∑

n=1

∞∑
l=−∞

εnφn
l (ξ, τ)eιl(kx−ωt) (10)

where nc, uc, φ satisfy the reality condition A
(n)
−l = A

(n)∗
l

and asterisk denote the complex conjugate. Using (5)
through (10) in (1) to (3) and collecting the terms of dif-
ferent powers of ε, we get the reduced equations. For the
first order (n = 1), we get

−ιωn
(1)
1 + ιku

(1)
1 = 0 (11)

−ιωu
(1)
1 +

3ιkα

θ
(1 + α)n(1)

1 − ιkαφ
(1)
1 = 0 (12)

(1 − β + k2)φ(1)
1 +

1
α

n
(1)
1 = 0. (13)

Algebraic manipulations of these equations lead to the
following dispersion relation

ω2 =
k2

1 − β + k2
+

3k2α(1 + α)
θ

. (14)

From (11) to (13), we can express the first order quantities
in terms of φ

(1)
1 as

n
(1)
1 = −α(1 − β + k2)φ(1)

1 (15)

u
(1)
1 = −α

ω

k
(1 − β + k2)φ(1)

1 . (16)

For the second order (n = 2), reduced equation with l = 1,
we get

−ιωn
(2)
1 + ιku

(2)
1 = υg

∂n
(1)
1

∂ξ
− ∂u

(1)
1

∂ξ
(17)

− ιωu
(2)
1 +

3ιkα

θ
(1 + α)n(2)

1 − ιkαφ
(2)
1 = υg

∂u
(1)
1

∂ξ

− 3α(1 + α)
θ

∂n
(1)
1

∂ξ
+ α

∂φ
(1)
1

∂ξ
(18)

(1 − β + k2)φ(2)
1 +

1
α

n
(2)
1 = 2ιk

∂φ
(1)
1

∂ξ
. (19)

Using (15) to (19), we can put the second order quanti-
ties n

(2)
1 , u

(2)
1 in terms of φ

(2)
1 and ∂φ

(1)
1 /∂ξ. Then, these

are further algebraically manipulated and we obtain the
following compatability condition:

υg =
k

ω

[
1 − β

(1 − β + k2)2
+

3α(1 + α)
θ

]
. (20)
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P = −3
2

k4

ω3(1 − β + k2)4

[
(1 − β) +

(
3α(1 + α)(1 − β)

θ
− k2α(1 + α)

θ

)
(1 − β + k2)

]
(30)

Q =
k

2αω2(1 − β + k2)

[
−Bkω

(
α +

1
(1 − β)(1 − β + k2)

+
2α(1 − β)
1 − β + k2

+
12α2(1 + α)(1 − β + k2)

θ

)

− k2A

[
1

(1 − β + k2)(1 − β + 4k2)
+ 3α

(
1 +

4α(1 + α)(1 − β + k2)
θ

)]

+3ωk(1 − β + k2)2
(

1 +
2α(1 + α)(1 − β + k2)

θ

)

+
ωkα(1 + 3β)
2(1 − β + k2)

− kαω

(1 − β)(1 − β + k2)
− kω(2α(1 − β + k2)2 − 1)

2(1 − β + k2)(1 − β + 4k2)

]
(31)

The second harmonic mode of the carrier, which comes
from nonlinear self-interaction, is also obtained in terms of
[φ(1)

1 ]2. The component l = 2 for the second order, n = 2,
reduced equations determine the second order quantities.
They turn out to be

u
(2)
2 = D[φ(1)

1 ]2 (21)

n
(2)
2 =

[
k

ω
D + (1 − β + k2)2α2

]
[φ(1)

1 ]2 (22)

φ
(2)
2 =

[− 2
α ( k

ω D + (1 − β + k2)2α2) − 1
]

2(1 − β + 4k2)
[φ(1)

1 ]2 (23)

where

D =
αω(1 − β + k2)

6k3

[
α(1 − β + k2)(1 − β + 4k2)

+
12α2

θ
(1 + α)(1 − β + k2)(1 − β + 4k2)

+2α(1 − β + k2)2 + 1
]
. (24)

The nonlinear self-interaction of the carrier wave also leads
to the creation of a zeroth order harmonic. Its strength is
analytically determined by taking l = 0 component of the
third - order reduced equations i.e., for n = 2 , l = 0. The
result is expressed in terms of the square of modulus of
n = 1, l = 1 quantities i.e., [φ(1)

1 ]2 = φ
(1)
1 φ

(1)∗
1

n
(2)
0 = B[φ(1)

1 ]2 (25)

φ
(2)
0 = −

(
1

1 − β

) {
B

α
+ 1

}2

[φ(1)
1 ]2 (26)

u
(2)
0 =

(
Bυg − 2ω

k
(1 − β + k2)2α2

)
[φ(1)

1 ]2 (27)

where

B =
−α

[
2α
k (1 − β)(1 − β + k2)2

(
ωυg + 3α(1+α)k

θ

)
+ α(1 − β + k2)(1 − β) + 1

]
[
1 − (1 − β)

(
υ2

g − 3α(1+α)
θ

)] . (28)

Finally, substituting the above derived expressions into
l = 1 component of the third order (n = 3) part of
the reduced equation, we obtain the following nonlinear
Schrödinger equation (NLSE):

ι
∂φ

∂τ
+ P

∂2φ

∂ξ2
+ Q|φ|2φ = 0 (29)

where

see equations (30, 31) above

with

A =
αω(1 − β + k2)

6k3

[
α(1 − β + k2)(1 − β + 4k2)

+
12α2

θ
(1 + α)(1 − β + k2)(1 − β + 4k2)

+2α(1 − β + k2)
2

+ 1
]
. (32)

In the NLSE (29), we have replaced φ
(1)
1 by φ for the sake

of notational convenience.

3 Stability analysis and discussion

In the standard stability analysis, we linearize around the
monochromatic wave solution of the NLSE and modula-
tion on the wave amplitude takes place in the propagation
direction. Therefore, we separate the amplitude φ into two
parts as follows:

φ = [Φ0 + δφ(ζ)]e(−ι∆τ) (33)

where ζ = Kξ − Ωτ is the modulation phase and
0 < K � k and Ω � ω are respectively the wavenumber
and frequency of modulation. Φ0 is the amplitude of pump
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carrier wave, δφ � Φ0 small amplitude perturbation and
∆ is a nonlinear frequency shift.

Substituting (33) into (29) and collecting the terms of
same order, we obtain

∆ = −Q|Φ0|2 (34)

and

ι
∂δφ

∂τ
+ P

∂2δφ

∂ζ2
+ Q|Φ0|2(δφ + δφ∗) = 0 (35)

where δφ∗ is complex conjugate of δφ. On assuming that
the amplitude perturbation varies as exp[ι(Kξ−Ωτ)] and
following the standard procedure [36], after simplification
we get

Ω2 = PK2(PK2 − 2Q|Φ0|2). (36)
Equation (36) is nonlinear dispersion relation for the am-
plitude modulation. It is apparent from this relation that
Ω2 > 0 for all k > 0 when PQ < 0. In this case Ω is real
and waves are stable. However, when PQ > 0, Ω2 < 0
then K2 < (2Q/P )|Φ0|2 and waves are modulationally
unstable. The maximum growth rate is obtained for K =√|Q/P | |Φ0| and is given by γmax = Im(Ω)max = Q|Φ0|2.
It is seen that instability sets in for perturbation wave-
length λ > λc, where λc = 2π/Kc and Kc =

√|P/Q| |Φ0| .
Now we discuss the possible localized solitary wave

solutions of (29). Since the wave packet can be stable or
unstable in different conditions of θ, k, σ, β and α. P
and Q can both be negative or they can have different
signs. The latter condition implies two types of stationary
solutions of NLSE. To obtain the profile in both cases, let
us put

φ = ρ(ζ, τ)e[ισ(ζ,τ)] (37)
where ρ and σ are two real variables. Substituting (37)
into (29) and separating the real and imaginary parts and
solve the resulting equation for ρ and σ. In case of mod-
ulationally unstable wave with P and Q having the same
signs, we obtain the following envelope soliton solution

φ(ξ, τ) = ρmsech

(√
1
2

∣∣∣∣QP
∣∣∣∣ρmζ

)
(38)

where ρm is constant and represents the nonlinear maxi-
mum amplitude. On the other hand with P and Q having
the opposite signs, we have modulationally stable wave
and obtain

ρ(ξ, τ) = ρ1

(
1 − b2sech2

(√
ρ1

2

∣∣∣∣QP
∣∣∣∣bζ

))1/2

(39)

where 1 ≥ b2 = ρ2
1 − (ρ2

m)ρ2
1, ρ1 is a constant. Equa-

tion (39) represents an envelope hole sometimes called a
dark soliton. Such solution corresponds to the accumula-
tion of density in a region where wave intensity is very low.
The parameter b determines the depth of the modulation.
Further, when b = 1, we have

ρ(ξ, τ) = ρ1tanh

[√
ρ1

2

∣∣∣∣QP
∣∣∣∣bζ

]
(40)

which is known as envelope shock.

(a)

(b)

(c)

Fig. 2. Plot of Q = 0 in (k−1/θ) plane for: (a) α = 2.0, β = 0;
(b) α = 2.0, β = 0.4; (c) α = 2.0, β = 0.9.

Coefficients P , Q of dispersion and nonlinear terms
respectively are the functions of θ, nonthermal electrons
distribution parameter β, ratio of hot electrons to cold
electrons density α and wavenumber k. Therefore, one ex-
pects that θ and β will affect the unstable characteristics.
We have chosen the following parameters:

nc0 = 0.5 cm−3, nh0 = 2.5 cm−3 and β = 0, 0.4, 0.9.

These parameters are within the range of observations
from Viking satellite in the dayside auroral zone [10]. For
pictorial presentation of the results, we perform computa-
tion and plot Q = 0 curves in k − 1/θ plane for different
values of β as shown in Figure 2. Obviously, the parame-
ter space k − 1/θ is divided into two regions i.e. PQ > 0
(unstable region) and PQ < 0 (stable region). Similar
computation can be performed for the plot P = 0 curve
in k − 1/θ plane for different values of β. It is noteworthy
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(a)

(b)

Fig. 3. Variation of P and Q as a function of k for four dif-
ferent values of β with α = 2.0 and θ = 100: for (a) curve 1
corresponds to β = 0, curve 2 to β = 0.4, curve 3 to β = 0.6
and curve 4 to β = 0.8; (b) curve 1 corresponds to β = 0,
curve 2 to β = 0.2, curve 3 to β = 0.6 and curve 4 to β = 0.8.

that these two regions are significantly modified by non-
thermal electrons distribution parameter β. Let us con-
sider the case of isothermal electrons distribution corre-
sponding to β = 0. In this case, we find that wave packet
will be unstable at higher wave numbers (k > 0.6) and
at higher Tc/Th. The critical value of k for the onset of
instability is lowered with increase of relative tempera-
ture Tc/Th. This feature obviously highlights the crucial
role of the nonthermal electrons distribution as a major
contributing factor to cause the modulational instability.
Figure 2 indicates the unstable region which is extended
to lower wavenumber region with increase in value of β as
long as β < 0.4. However, further increase of β reverses
this trend as shown in Figure 2c.

Lastly, we have shown the variation of P and Q as a
function of k for different values of β in Figures 3a and 3b
respectively. From Figure 3a, it is obvious that width of
the soliton increases with β. From Figures 3a and 3b, we
find that the effect of β on wave amplitude and width is
more significant for longer wavelengths.
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